Occlusion of Ca2+ in soluble monomeric sarcoplasmic reticulum Ca2+-ATPase

Bente Vilsen and Jens P. Andersen *

Institute of Physiology, University of Aarhus, 8000 Aarhus C (Denmark)

(Received November 11th, 1985)

Key words: Ca²⁺-ATPase; Ca²⁺ occlusion; Detergent; CrATP; Sarcoplasmic reticulum; HPLC; (Rabbit muscle)

Sarcoplasmic reticulum Ca²⁺-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of ⁴⁵Ca²⁺. A Ca²⁺-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca²⁺. The elution position corresponded to monomeric Ca²⁺-ATPase. It is concluded that a single Ca²⁺-ATPase polypeptide chain provides the full structural basis for Ca²⁺ occlusion.

Definition of the minimal functional unit of the Ca2+ pump protein (Ca2+-ATPase) of sarcoplasmic reticulum is an important issue in relation to the mechanism of active Ca²⁺ transport. It has been demonstrated that a single Ca2+-ATPase polypeptide chain $(M_r 110000)$ is able to undergo the conformational transitions involved in energy transduction [1-3]. It is, however, not known if vectorial Ca²⁺ translocation requires participation of two or more polypeptide chains per pump unit. The large Hill coefficient (> 3) measured in Ca²⁺binding experiments at alkaline pH suggests that Ca2+ sites on different ATPase chains may interact [4]. Furthermore a number of structural studies indicate that the Ca2+-ATPase polypeptide chains are in close contact in the native membrane [5-8].

The initial Ca²⁺ occlusion occurring in relation to phosphorylation is likely to be a key event in the translocation process [9–11]. In the occluded state there is no exchange of bound Ca²⁺ with cytoplasmic or luminal free Ca²⁺. The structural basis for this very tight binding has not yet been

Previous studies on membrane bound Ca2+-ATPase suggest that the Ca2+ occluded phosphorylated intermediate is identical to the ADP sensitive phosphoenzyme species (E₁P) [9,10]. After solubilization in monomeric form with C₁₂E₈ the transition from E₁P (formed from ATP) to E₂P is much accelerated [3], thus precluding examination of Ca2+ occlusion. We have therefore taken advantage of the finding by Serpersu et al. [11], that phosphorylation from β, γ -bidentate CrATP gives rise to an E₁P form which converts only very slowly to E₂P. Ca²⁺-ATPase was solubilized in C₁₂E₈ at a detergent to protein concentration ratio of 10:1, which according to our large zone gel filtration experiments and analytical ultracentrifugation studies monomerizes all active enzyme. The monomeric Ca2+-ATPase was incubated with 1 mM CrATP in the presence of 123 μ M 45 Ca²⁺ and 10 mM MgCl, to bind ⁴⁵Ca²⁺ only to specific high-affinity transport sites. After 4 h the sample was subjected to molecular sieve high performance liquid chromatography (HPLC) as previously described [13]. It can be seen from Fig. 1 that ⁴⁵Ca²⁺

elucidated. In the present report we demonstrate that monomeric Ca^{2+} -ATPase peptide solubilized by the non-ionic detergent octaethyleneglycol monododecyl ether $(C_{12}E_8)$ is able to form a stable occluded state.

^{*} To whom correspondence should be addressed. Abbreviations: EGTA, ethylene glycol bis(β -aminoethyl ether)-N, N, N', N'-tetraacetic acid; Tes, N-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid; SDS, sodium dodecyl sulfate.

remained bound to the soluble monomeric Ca²⁺-ATPase protein even in the presence of 1.5 mM non-radioactive Ca²⁺ in the eluant. When 1% SDS was included in the eluant, or when CrATP was not present during incubation with ⁴⁵Ca²⁺, no ⁴⁵Ca²⁺ was associated with the Ca²⁺-ATPase peak. Therefore the CrATP induced occlusion of ⁴⁵Ca²⁺ depends on the intact structure of the Ca²⁺-ATPase polypeptide, but does not require participation of more than one chain.

In Fig. 2 the rate and stoichiometry of Ca²⁺ occlusion in the soluble monomer has been ex-

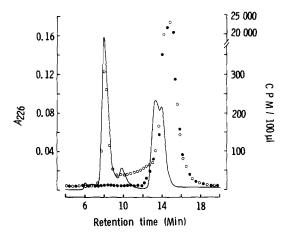


Fig. 1. CrATP-induced Ca2+ occlusion in soluble monomeric Ca²⁺-ATPase. Purified Ca²⁺-ATPase vesicles (0.5 mg), prepared from rabbit skeletal muscle as in Ref. 1, were solubilized in 1 ml buffer containing 5 mg C₁₂E₈/ml, 0.1 M NaCl, 20 mM Tes (pH = 7.0), 123 μ M Ca²⁺ (with ⁴⁵Ca²⁺), 10 mM MgCl₂ and 5 mM dithiothreitol. The sample was centrifuged for 30 min in a Beckman Airfuge at 130000 × g, and the supernatant was incubated at 20°C with 1 mM β, γ-bidentate Cr(III)ATP synthesized and purified as described in Ref. 14. After 4 h 200 μl sample was injected into a TSK G 3000 SW column (7.5 mm×30 cm) operated at a flow rate of 0.8 ml/min (pressure 8-10 bar). The eluant contained 5 mg $C_{12}E_8/\text{ml}$, 0.1 M NaCl, 20 mM Tes (pH = 7.0), 1.5 mM 40 CaCl₂, 1.0 mM EGTA, 10 mM MgCl₂ and 5 mM dithiothreitol. The collected fractions were analyzed for protein content and radioactivity. The line shows absorbance read at 226 nm. Points show 45 Ca2+ radioactivity; ○, soluble Ca²⁺-ATPase incubated with CrATP; •, soluble Ca2+-ATPase incubated in the absence of CrATP. The peak emerging after 8 min corresponds to monomeric Ca²⁺-ATPase as determined by analytical ultracentrifugation and calibration of the column with standard proteins (cf. Ref. 13). The small peak at 10 min retention time contains mixed micelles of phospholipid and detergent. The peaks at approx. 14 min contain free CrATP and degradation products. The radioactivity associated with the Ca2+-ATPase peak corresponds to 5-6 nmol Ca2+/mg protein.

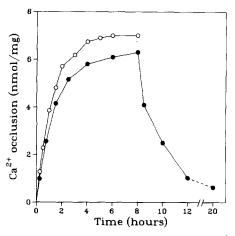
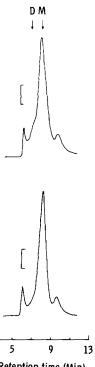



Fig. 2. Time dependence of CrATP-induced Ca²⁺ occlusion in soluble and membrane bound Ca²⁺-ATPase. Soluble monomeric Ca²⁺-ATPase (•) was incubated with 1 mM CrATP as described for Fig. 1. After various times aliquots were chromatographed as in Fig. 1 and Ca²⁺ occlusion determined from the radioactivity associated with the protein peak. After 8 h 2 mM EGTA was added to the sample to induce deocclusion. Membrane bound Ca²⁺-ATPase (○) was incubated likewise but in the absence of detergent. Aliquots were washed with 20 ml buffer (0.1 M NaCl, 20 mM Tes (pH 7.0), 1.5 mM ⁴⁰ CaCl₂, 1.0 mM EGTA, 10 mM MgCl₂) on Millipore filters (0.22 μm) and the radioactivity deposited on the filters was measured.

amined by the same technique as used in Fig. 1. It is seen that CrATP induced Ca²⁺ occlusion is a slow process, in accordance with the original study by Serpersu et al. [11] on membrane bound Ca²⁺-ATPase. After 8 h incubation a steady state is reached in which 6-7 nmol Ca²⁺/mg ATPase protein has become occluded. Fig. 2 also shows that Ca²⁺ occlusion can be reversed by addition of EGTA which chelates free Ca²⁺, thereby stopping new formation of phosphoenzyme. The rate constant for deocclusion is 0.5-1 per hour.

In addition Millipore filtration experiments performed with membrane bound Ca²⁺-ATPase are shown in Fig. 2. The results are very similar to those obtained with the soluble monomer (7 nmol Ca²⁺ occluded per mg protein). The small difference can be ascribed to higher stability of membrane bound Ca²⁺-ATPase during the long incubation period [12].

To obtain the high steady state levels of occluded Ca²⁺ shown in Fig. 2, we found it essential, that our CrATP concentration was kept relatively high (1 mM). At a lower concentration (0.1 mM) the same initial rate of occlusion was observed, but

Retention time (Min)

Fig. 3. Effect of CrATP-induced Ca^{2+} occlusion on monomerdimer equilibrium in soluble Ca^{2+} -ATPase at low detergent concentration. Ca^{2+} -ATPase was solubilized at a detergent to protein concentration ratio of 2:1 and incubated as in Fig. 1. The HPLC was run as in Fig. 1 except that the eluant contained 0.1 mg $C_{12}E_8/ml$ and 500 μl protein was injected. Vertical bars indicate ΔA_{226} values corresponding to 0.1 absorbance unit. The upper chromatogram shows Ca^{2+} -ATPase incubated in absence of CrATP. The lower chromatogram shows Ca^{2+} -ATPase incubated in presence of CrATP. D and M indicate elution positions of pure dimers and monomers of Ca^{2+} -ATPase, respectively (cf. [13]).

a steady state of only 3-4 nmol/mg was reached within 2 h. This is probably due to chemical decomposition of CrATP, which is not negligible at pH 7.0.

Equilibria between soluble monomers and oligomers of Ca²⁺-ATPase can be studied by HPLC at a low detergent concentration [13]. Fig. 3 shows the effect of CrATP induced Ca²⁺ occlusion

on the monomer-dimer equilibrium. The presence of dimer in absence of CrATP is indicated by the 'shoulder' on the major peak which furthermore elutes a little in front of the monomer position. Most of the dimer is seen to dissociate into monomer when CrATP has reacted with the soluble protein. This indicates that the association constant for dimer formation is lower in the Ca^{2+} occluded E_1P form relative to the non-occluded E_1 state, present in absence of CrATP.

From these data we conclude, that the minimal functional unit in Ca²⁺ occlusion is constituted by a single Ca²⁺-ATPase polypeptide chain. Further studies on the cooperativity between the sites involved in Ca²⁺ occlusion are in progress in this laboratory.

This work has been supported by the Danish Medical Research Council and P. Carl Petersen Foundation to whom we express thanks.

References

- Andersen, J.P., Lassen, K. and Møller, J.V. (1985) J. Biol. Chem. 260, 371-380
- 2 Martin, D.W., Tanford, C. and Reynolds, J.A. (1984) Proc. Natl. Acad. Sci. USA 81, 6623-6626
- 3 Andersen, J.P., Jørgensen, P.L. and Møller, J.V. (1985) Proc. Natl. Acad. Sci. USA 82, 4573-4577
- 4 Watanabe, T., Lewis, D., Nakamoto, R., Kurzmack, M., Fronticelli, C. and Inesi, G. (1981) Biochemistry 20, 6617-6625
- 5 Wang, C.-T., Saito, A. and Fleischer, S. (1979) J. Biol. Chem. 254, 9209-9219
- 6 Andersen, J.P., Fellmann, P., Møller, J.V. and Devaux, P.F. (1981) Biochemistry 20, 4928-4936
- 7 Hymel, L., Maurer, A., Berenski, C., Jung, C.Y. and Fleischer, S. (1984) J. Biol. Chem. 259, 4890-4895
- 8 Taylor, K., Dux, L. and Martonosi, A. (1984) J. Mol. Biol. 174, 193-204
- 9 Dupont, Y. (1980) Eur. J. Biochem. 109, 231-238
- 10 Takisawa, H. and Makinose, M. (1983) J. Biol. Chem. 258, 2986-2992
- 11 Serpersu, E.H., Kirch, U. and Schoner, W. (1982) Eur. J. Biochem. 122, 347-354
- 12 Møller, J.V., Lind, K.E. and Andersen, J.P. (1980) J. Biol. Chem. 255, 1912–1920
- 13 Andersen, J.P. and Vilsen, B. (1985) FEBS Lett. 189, 13-17
- 14 Dunaway-Mariano, D. and Cleland, W.W. (1980) Biochemistry 19, 1496–1505